The Benefits of Cogeneration:
A Case Study of Upper Chesapeake Medical Center
May 6, 2014
Upper Chesapeake Medical Center

• Located in Bel Air, Maryland, part of University of Maryland Medical System
• Contains a 200 bed state-of-the-art general medical, surgical hospital and medical complex including:
 – Hospital
 – Two medical office buildings (MOB) Pavilion I and II
 – Parking garage
 – Klein Ambulatory Care Center of Harford County
 – Administrative offices
 – Cancer Center
• Serves the residents of northeastern Maryland
Hospital Facility Challenges

• Single point of failure in backup power system design
 – One existing 1.5MW diesel generator

• Minimal to no upfront capital available for system upgrades
 – Capital budgets favored other revenue generating investments
 – Previous CHP capital budget requests denied

• Need for additional cooling capacity and backup power

• Limited space to install new CHP system components

• Increase electrical/steam/cooling/hot water availability during utility outages and emergencies

• Resources to oversee the design/construction/permitting and operation and maintenance of the CHP system
Electrical Distribution Hurdles

• Electrical service to the campus is delivered to a service station via a pair of 33KV feeders:
 – Fed to six (6) substations
 – Three (3) of the six (6) substations feed the “healthcare” uses
• Cancer Center is serviced by a separate feeder
• 1,500KW diesel generator insufficient to provide power to greater than the critical care and a few other connected loads
Solution Development

• Worked with ESF team to evaluate system sizing, location and options

• Considered various options including:
 − Two (2) smaller cogeneration totaling 2MW
 − Upsizing the absorption chiller
 − Increasing loads on existing electrical buses

• Derived optimal solution after considering:
 − Physical space
 − Total system cost
 − Seasonality of existing building loads
 − Thermal loads balance with electrical production
 − Noise mitigation to meet local ordinance db levels
 − Environmental impacts
 − BGE incentive requirements
UCMC CHP System Components

- 2 MW Caterpillar Natural Gas Reciprocating Engine
- 350 ton Broad Absorption Chiller
- 500 ton Heat Rejection Cooling Tower
- 2,245 lbs/hour Heat Recovery Steam Generator (HRSG)
- Two heat rejection radiators
- Two Plate and Frame Heat Exchangers
- Power Monitoring Control System (PMCS)
- Energy Management Control System (EMCS)
Other Key CHP Major Components

- Sump pump station
- Switchboard/circuit breakers
- Upgraded electrical breakers, panels and control systems
- Field devices:
 - Natural Gas meters
 - Heating & cooling system flow meters
 - Valves, actuators, temperature, and pressure sensors
2MW Natural Gas Fed Generator Set
Chiller & HRSG Make Tri-Gen System

350 Ton Absorption Chiller

2,245 lbs/hour HRSG
System Layout

- The CHP is located within a single story, 705 sq ft building in existing mechanical pit
- The building houses:
 - Generator
 - HRSG
 - Feed water pumps
 - HT heat exchanger
 - LT and HT radiators
- Other components located in or adjacent to the existing central plant include:
 - Absorption chiller
 - Cooling tower
 - Electrical gear
 - Control panels
PPA Structure Highlights

- Hospital buys all electricity generated by system from ESF
- Byproduct of waste heat is “free” and used to calculate “effective price of power”
- Minimum monthly payments from hospital
- Minimum performance guarantees by ESF
- 20 year contract with fixed escalation, allows for budgeting of utility expense
- Operations and maintenance cost of system including all rebuilds incorporated into cost for 20 years
- Buy-out options for hospital to purchase system early
- Hospital supplies natural gas – cost of this embedded into economic analysis and savings
Rationale to Use PPA from Hospital Perspective

- Use of Federal tax credits and depreciation cannot access as non-profit hospital
- Ability to lock in future electric rates
- Access to funding source
- Ability to have turnkey delivery of all aspects system
 - Development
 - Permitting
 - Design
 - Construction
 - O&M
 - Financing
 - Incentive management
- Risk transference from hospital
- Complexity of project coordination
- Any cost overages borne by ESF
Some CHP and PPA Considerations

- Legal expense to negotiate PPA
- Town/County willingness to abate certain personal property tax
- Balance sheet treatment by auditors
- Potential of ongoing Title V compliance reporting costs
- Preparation for potential DHHS standards
Summary

- CHP system a “home run” for UCMC
- PPA structure facilitated delivery of vital infrastructure which would not have otherwise received funding
- Hospital able to operate during storm/prolonged outage
 - Improved reliability when combined with diesel generator (approximately 65% of hospital electrical load)
 - Serve as a vital community resource during emergencies
- Environmentally friendly solution
 - 2.0MW system equivalent of taking 2,200 cars permanently off our roads!